Dimension Reduction in L p , 0 < p < 2

نویسنده

  • Gideon Schechtman
چکیده

Complementing a recent observation of Newman and Rabinovich for p = 1 we observe here that for all 0 < p < 2 any k points in Lp embeds with distortion (1 + ε) into lp where n is linear in k (and polynomial in ε−1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaled Dimension and the Berman-Hartmanis Conjecture

In 1977, L. Berman and J. Hartmanis [BH77] conjectured that all polynomialtime many-one complete sets for NP are are pairwise polynomially isomorphic. It was stated as an open problem in [LM99] to resolve this conjecture under the measure hypothesis from quantitative complexity theory. In this paper we study the polynomial-time isomorphism degrees within degm(SAT ) in the context of polynomial ...

متن کامل

On the regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space

In this paper the regularity of weak solutions and the blow-up criteria of smooth solutions to the micropolar fluid equations on three dimension space are studied in the Lorentz space L(R). We obtain that if u ∈ Lq(0, T ;L(R)) for 2 q + 3 p ≤ 1 with 3 < p ≤ ∞; or ∇u ∈ Lq(0, T ;L(R)) for 2 q + 3 p ≤ 2 with 3 2 < p ≤ ∞; or the pressure P ∈ Lq(0, T ;L(R)) for 2 q + 3 p ≤ 2 with 3 2 < p ≤ ∞; or ∇P ...

متن کامل

Sharp Constant and Extremal Function for the Improved Moser-trudinger Inequality Involving L Norm in Two Dimension

Let Ω ⊂ R 2 be a smooth bounded domain, and H 1 0 (Ω) be the standard Sobolev space. Define for any p > 1, λp(Ω) = inf u∈H 1 0 (Ω),u ≡0 ∇u 2 2 /u 2 p , where · p denotes L p norm. We derive in this paper a sharp form of the following improved Moser-Trudinger inequality involving the L p-norm using the method of blow-up analysis: sup u∈H 1 0 (Ω),∇u 2 =1 Ω e 4π(1+αu 2 p)u 2 dx < +∞ for 0 ≤ α < λp...

متن کامل

BV Estimates Fail for Most Quasilinear Hyperbolic Systems in Dimensions Greater Than One

We show that for most non-scalar systems of conservation laws in dimension greater than one, one does not have BV estimates of the form II ruff)II T,V. "( F(II Vu(O)II T.v.), F e C(N), F(0) = 0, F Lipshitzean at 0, even for smooth solutions close to constants. Analogous estimates for L p norms IIuff)--alIL, < F(Ilu(O)--alIL,), p+2 with F as above are also false. In one dimension such estimates ...

متن کامل

On Semistable Principal Bundles over a Complex Projective Manifold, Ii

Let (X, ω) be a compact connected Kähler manifold of complex dimension d and EG −→ X a holomorphic principal G–bundle, where G is a connected reductive linear algebraic group defined over C. Let Z(G) denote the center of G. We prove that the following three statements are equivalent: (1) There is a parabolic subgroup P ⊂ G and a holomorphic reduction of structure group EP ⊂ EG to P , such that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011